CCIM History by the Decades

The Calculators

\&

The Calculations

There is evidence that interest was calculated and charged for purchases of goods and for loans as early as c. 5000 BC , if not earlier, and records indicate rates of 10-25 percent. (Wikipedia)

$\mathbf{1}^{\text {st }}$ known calculator - The Abacus 2700-2300 BC in Sumeria, then to Egypt, Greece and China

A main concern of ours in Commercial Real Estate is the Capital Market (CI-101)

Investors Acquire Buildings

Value Based On Return

Relationship of Value to NOI

Supply and Demand Determine NOI

Capital Market \& Cap Rates

The Anatomy of a Cap Rate*

- Cap rate quantification began with L. W. Ellwood an appraiser in NJ
- "Ellwood Tables for Real Estate Appraising and Financing" first published in 1959
- One basic flaw of Ellwood's formula is it's complexity
- Charles Akerson simplified it in 1970 with Band of Investment theory
*Marketing Investment Real Estate-Finance Taxation Techniques by Messner, Schreiber, Lyon \& Ward

Calculators from 1940 through 1975

Monroe-High speed adding calculator-1940
https://www.dropbox.com/s/d7okb0db8n5nwy2/HP\ Computer\ Video\ Clip.mpg? $\underline{\mathrm{dl}=0}$

Let's take a quick look at the Ellwood tables and please stay awake!

 MONTHLY COMPOUNI INTEREST TABLEEFPECTIVE RATE $=5 / 12 \% \quad$ CASE $=1.08816838+$

mentus	AnOUNT OF। AT COMPOUND $s^{n}=(1+0)^{n}$	accumulation OF 1 PER P隹顒OD $S_{n}=\frac{s^{n}-1}{i}$	$1 S_{\substack{\text { al }}}^{\substack{3 \\ \text { SiNKING } \\ \text { FACTO } \\ \text { FACTOR }}}$	PRES. VALUE OFI $v^{n}=\frac{1}{3^{n}}$		ms7alusent pe amokriel $\operatorname{lom}_{\theta^{2}}=\frac{1}{1-7}$	$\begin{gathered} n \\ \text { Moning } \end{gathered}$
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$	1.004167 1.008351 1.012552 1.01671 1.021008 1.025262	$\begin{aligned} & 1.000000 \\ & 2.004167 \\ & 3.012517 \\ & 4.025070 \\ & 5.04184 \\ & 6.062848 \end{aligned}$	$\begin{array}{r} 1.000000 \\ .498960 \\ .331948 \\ .248443 \\ .198340 \\ .164939 \end{array}$	995851 991718 987603 983506 979425 97536	$\begin{aligned} & .995851 \\ & 1.987569 \\ & 2.975173 \\ & 3.958678 \\ & 4.938103 \\ & 5.913463 \end{aligned}$	$\begin{array}{r} 1.004167 \\ .503127 \\ .336115 \\ .252610 \\ .202507 \\ .169108 \end{array}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$
$\begin{aligned} & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.029534 \\ & 1.033824 \\ & 1.038131 \\ & 1.042457 \\ & 1.046800 \end{aligned}$	$\begin{array}{r} 7.088110 \\ 8.117644 \\ 9.151467 \\ 10.189599 \\ 11.232055 \\ \hline \end{array}$	$\begin{aligned} & .141081 \\ & .123188 \\ & .109272 \\ & .098139 \\ & 089031 \\ & \hline \end{aligned}$	971313 967283 963269 959272 955292	$\begin{array}{r} 6.884777 \\ 7.852060 \\ 8.815329 \\ 9.774602 \\ 10.729894 \end{array}$	$\begin{array}{r} 145248 \\ .127355 \\ .113439 \\ .102306 \\ .093198 \\ \hline \end{array}$	$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{array}$
$\begin{gathered} \text { YEARS } \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{gathered}$	$\begin{aligned} & 1.051162 \\ & 1.104941 \\ & 1.161472 \\ & 1.220895 \\ & 1.283359 \end{aligned}$	$\begin{aligned} & 12.278855 \\ & 25.185921 \\ & 38.753336 \\ & 53.14885 \\ & 68.006083 \end{aligned}$.081441 .039705 .025804 .018863 .014705	$\begin{aligned} & .951328 \\ & .905025 \\ & .860976 \\ & .819071 \\ & .779205 \end{aligned}$	11.681222 22.793898 33.365701 43.422956 52.990706	.085608 .043872 .029971 .023030 .018872	$\begin{aligned} & 12 \\ & 24 \\ & 36 \\ & 48 \\ & 60 \end{aligned}$
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.349018 \\ & 1.418036 \\ & 1.490585 \\ & 1.566847 \\ & 1.647010 \end{aligned}$	$\begin{array}{r} 83.764259 \\ 100.328653 \\ 117.740513 \\ 136.043196 \\ 155.282280 \end{array}$	$\begin{aligned} & .011938 \\ & .009967 \\ & .008493 \\ & .007351 \\ & .006440 \end{aligned}$	$\begin{aligned} & .741280 \\ & .705201 \\ & .670877 \\ & .638225 \\ & .607161 \end{aligned}$	$\begin{aligned} & 62.092777 \\ & 70.751835 \\ & 78.989441 \\ & 86.826108 \\ & 94.281350 \end{aligned}$	016105 .014134 012660 011518 010607	$\begin{array}{r} 72 \\ 84 \\ 96 \\ 108 \\ 120 \end{array}$
$\begin{aligned} & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.731274 \\ & 1.819849 \\ & 1.912956 \\ & 2.010826 \\ & 2.113704 \end{aligned}$	175.505671 196.763730 219.109392 242.598300 267.288945	$\begin{aligned} & .005698 \\ & .005082 \\ & .004564 \\ & .004122 \\ & .003741 \end{aligned}$	$\begin{aligned} & .577609 \\ & .549496 \\ & .522751 \\ & .497308 \\ & .473103 \end{aligned}$	$\begin{aligned} & 101.373733 \\ & 108.120917 \\ & 114.539704 \\ & 120.646077 \\ & 126.455243 \end{aligned}$	009865 009249 008731 008289 007908	$\begin{aligned} & 132 \\ & 144 \\ & 156 \\ & 168 \\ & 180 \end{aligned}$
$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.221845 \\ 2.335519 \\ 2.455008 \\ 2.580611 \\ \hline \end{array}$	$\begin{aligned} & 293.242810 \\ & 320.524524 \\ & 349.202023 \\ & 379.34717 \end{aligned}$	003410 003120 002864 002636	.450076 .428170 .407331 387505	131.981666 137.239108 142.240661 146.998780	007577 007287 007031 006803	$\begin{aligned} & 192 \\ & 204 \\ & 216 \\ & 228 \end{aligned}$
20	2.712640	411.033670	. 002433	368645	151.525313	. 006600	240

- Column 1 - Amount of 1 at compound interest

Example - What will $\$ 10,000$ grow to in 20 years at 5% compounded monthly? $(\$ 10,000 \times 2.712640=\$ 27,126.40)$

- Column 2 - Accumulation of 1 per period

Example - If I deposit $\$ 1,000 / \mathrm{mo}$. For 20 years at 5% what is the future value? $(\$ 1,000 \times 411.033670=\$ 411,033.67)$

- Column 3-Sinking Fund factor

Example - How much to put in every month to grow to $\$ 100,000$ in 20 years at 5% ? (\$100,000 x . 002433 = \$243.29)

- Column 4 - Present value reversion of 1

Example - How much to pay for a bond that will be worth $\$ 100,000$ in 20 years, paying 5% ? (discounting) ($\$ 100,000 \times .368645=\$ 36,864.45$)

- Column 5 - Present value ordinary annuity 1 per period

Example - Annuity pays $\$ 300 / \mathrm{mo}$. at 5% over 20 years, how much do you pay for it? PV? ($\$ 300 \times 151.525313=\$ 45,457.59)$

- Column 6 - Installment to Amortize 1

Example - What's the monthly payment to amortize a \$100,000 loan at 5\%, monthly, 20 years? $(\$ 100,000 \times .006600=\$ 659.95)$

HP-80 \$400 (1973) wt. 8.7 oz.

2-15-20i0 ?

A Mrame	306mat	54mern	teser	Aurbobe
Nevt	(Ay	$C 1$	CHE	
1715	\square		IC	4.all

HP-10B II+ \$19-\$29 (2001)

HP-12C \$69 (1981)

HP 10BII for iPhone \$5.99 (2009)

180	3.54	,500,000	11.8	250000
N	INR	PV	PMT	FV AMORT
INPUT	MU	$\underset{\text { IRRNT }}{\substack{\text { CST }}}$	$\begin{aligned} & \text { PRC } \\ & \text { NPV } \end{aligned}$	MAR BEGEND
K	$\%$	CFj	$\Sigma+$	$\underset{\text { RND }}{\lessgtr}$
+/-	RCL	$\rightarrow \mathrm{M}$	RM	M +
	Σx^{2}	Σy^{2}	£xy	$n{ }^{\text {Pr }}$
	7	8	9	\div
		Sx, Sy	$\sigma_{\text {ux, } \sigma_{j}}$	$1 / x$
		$\stackrel{\Sigma}{5}_{5}$	£ ${ }^{\text {y }}$	$n{ }^{\text {Cr }}$
	4	5	6	\times
	depr	bond	${ }_{\text {x }}$	math
C	1	2	3	-
CAII	$e^{\text {ex }}$	LN	nt	\sqrt{x}
work sht	home	tvm	CF	conv
print	0			+
-		\%	DISP	x^{2}

TVM tab

CCIM Institute
Commercial Real Estate's
Global Standard for Professional Achievement

Legend		
Input Cells	Formula Cells	Description Cells

CCIM Financial Calculator-3/1/2017

Time Value of Money Calculations

NPV-IRR tab

CCIM

CCIM Financial Calculator-3/1/2017
Annual NPV and IRR Calculations

NPV Discount Rate	
Net Present Value	
Internal Rate of Return	

